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A Circuit Model for Gun Driven Spheromaks

K. I. Thomassen

In this note we derive circuit equations for sustained spheromaks, in the phase
after a spheromak is detached from the gun and sustained in a flux conserver.  The
impedance of the spheromak during the formation and "bubble burst" phase has
been discussed by Barnes et. al.1.  We assume here that the spheromak is formed
and helicity is being delivered to it from the gun, currents are above the threshold
current, and the λ-gradients are outward (λ decreasing inward).  We follow an open
field line that begins and ends at the gun electrodes, encircling the closed flux
surfaces of the spheromak, and apply power and helicity balance equations for this
gun-driven system.  In addition to these equations one will need to know the initial
conditions (currents, stored energies) after the "bubble burst" in order to project
forward in time.

Fields        Equations

We begin by applying the generalized Ohms law Etot  + v x B = ηj to the gun
circuit, consisting of an applied field E1 and response fields (back emf's, potential

drops).  The total field is* Etot  = E1 - ∇φ  - 
∂A
∂t     and there are 5 distinct types of

electric field encountered in the volume of open field lines (gun circuit) between the
gun electrodes; ohmic field, sheath field, Hall field, Faraday electric field, and
dynamo electric field.  Associating the sheath drops with the potential gradient,

E1 = Esh  + η j1 + 
∂A
∂t      - v x B  + Edyn

where Edyn  = - <δv x δB>.  Our notation will be that region 1 is the volume of open
field lines while region 2 is the volume of closed field lines.  We take the line integral
of the electric field from the positive electrode around the closed loop and find the
applied gun voltage,

Vg =  ⌡⌠E1� dı1    = Vsh +  ⌡
⌠

(η j 1  – v  x  B  +  E d y n  + 
∂A
∂t )� dı1   

The Hall currents and fields are important during formation1 but here we will assume
that any fluid flow is along the open lines, as appropriate for an established Taylor
equilibrium, so that the Hall term v x B is zero.  Using B = ∇  x A  we have

Vg = Vsh  + ⌡⌠ (η j1 + Edyn )� d ı1    +  
∂
∂t ⌡

⌠B2� dS2   

                                                
* See for example, Ramo and Whinnery, "Fields and Waves in Modern Radio" for a discussion of
making circuit equations from field equations.
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Here, dı1 is a path along any open line around the spheromak, from the positive gun
electrode to the negative one, and dS 2 is the unit area vector perpendicular to the

poloidal plane encircled by dı1.  The last term can be written  
∂Φ2
∂t     with

 Φ2 = ⌡⌠B2� dS2    = µo
⌡

⌠ 1

λ2
 j2dS 2    =  

µo

<λ2>
⌡⌠  j2� dS2    = LI2   

with <λ2>L = µo
The open line paths around the spheromak are all the flux surfaces between

the wall and the separatrix, and each enclose a slightly different flux.  But we assume
here and elsewhere that these open line surfaces constitute a relatively thin layer,
and that the flux conserver volume is dominated by closed flux surfaces.  In that
approximation the toroidal flux defined by any particular path is nearly the same as
that defined by all other paths.  

The current I1 along open lines flows through a cross sectional area Ao(ı) so

the current density is j1(ı) = 
Ao
I1

     and there is a resistance R1 = ⌡

⌠<η1>dı1

Ao(ı)
    .  The

proper value of <η1> to use is the one that gives the same value for I12R1 as the
volume integral of η1j12.

Power        and         Helicity        Equations

We define the gun power Pg = VgI1 as the product of I1 with the individual
voltages.  The gun supplies the ohmic losses, dynamo fields, sheath power, and any
increases in stored energy of the plasma.  Here we assume all the gun current flows
around the spheromak, but we can later allow for diverting a fraction directly across
the gun channel, in which case the remaining current is what we are now calling I1. 

For the dynamo power term we use the volume integral of the power density
j• Edyn , along with a model to be described later.  For now we simply call it Pdyn.
Then,

Pg = VshI1 + I12R1 + I1 
∂
∂t (LI2)    + Pdyn

with

Pdyn = ⌡⌠ j1� Edyn    dV1 = 
1
µo

⌡⌠λ1Edyn � B1   dV1 

Conservation of helicity gives an additional equation between the dynamo
power and gun power involving the λ-ratios of the two regions.   The  gun power
(less the sheath power) produces helicity at a rate

<λ1>
2µo

 
dKgun

dt      = Pg - Psh

Helicity is lost at the rate
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dK
dt      = 2⌡⌠Eη� B   dV = 2µo⌡


⌠η j2

λ
dV    = 

2µo

<λ>
 ⌡⌠ηj2   dV =  

2µo

<λ>
    Poh

Equating helicity production to helicity loss

(Pg - Psh)

<λ1>
    = {

Poh1

<λ1>
     + 

Poh2

<λ2>
    } ⇒ Poh2 =   

<λ2>

<λ1>
    {Pg - Psh - Poh1)

This latter form displays the usual "efficiency" ratio that determines how much power
goes to ohmic loss in the closed region.  

From the power equation the power available to the dynamo is

Pdyn = Pg - Psh - Poh1 - I1 
∂
∂t (LI2)    

To interpret the dynamo term, two different heuristic models are used.  The first is
quite simple and states how the dynamo power generated in region 1 must divide
between regions 1 and 2.  Clearly some of that power can be dissipated in region 1,
but some must flow across flux surfaces and provide power to region 2 where there
is no power source (the gun driven current in region 1, working against the dynamo
electric field, is the power source there).  We call these powers P1 and P2
respectively.  

Next, P2 must at least supply the ohmic losses in region 2, but could be larger
depending on the strength of the driving power in region 1.  We therefore have P2 =
Poh2 + P3.  While we can only calculate Poh2 and not the other two terms in the
dynamo power, there is nonetheless a useful relationship that is simply derived from
the power equations and helicity constraint.  Note that the character of the powers P1
& P3 is different, in that these are the result of turbulent processes that invest power
in waves that are dissipated via different channels.  The power can be dissipated by
Landau damping, ion cyclotron damping, or other processes, and at wave numbers
and frequencies dependent on details of the turbulence.   In contrast, the ohmic
powers represents the heat from electron-ion collisions, presumably as calculated
using Spitzer resistivity.

With these definitions, and the helicity constraint, the dynamo power is

Pdyn = P1 + Poh2 + P3 =  
<λ1>

<λ2>
    Poh2 - I1 

∂
∂t (LI2)   

Then, with ∆λ = <λ1> - <λ2> and PL = I1 
∂
∂t (LI2)   , another interesting relationship

arising from the helicity constraint is revealed;

   
∆λ

<λ2>
    Poh2 = P1 + P3 + PL = εPoh2
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Any difference in λ between that in the open and closed regions requires this power
equality, with εPoh2 the amount available for dynamo dissipation and inductive
power buildup.  This relationship is not dependent on any particular dynamo model.
We will argue below that the dissipation terms P1,3 likely require gradients in λ to
exist, thus a relationship between the field buildup rate and ∆λ also exists.  

So we proceed to a second model, using a hyper resistivity κ, to describe the
dynamo power.  If there are λ-gradients we expect power flow across flux surfaces
to be related to these gradients.  A model developed by Hooper2  (suggested from

the work of Boozer3 and Strauss4) gives Edyn•B  = – ∇ •  {
κB2

µo
    ∇λ }.  A calculation

of the dynamo power loss in a volume V then gives

Pdyn =⌡

⌠

 
λ
µo

 Edyn� BdV    = – ⌡

⌠

 
λ
µo

∇  �  {
κ B2

µo
 ∇λ }dV   

          = ⌡

⌠

{
κB2

µo
 ∇ λ }�  

∇ λ
µo

dV    – oÈ 
λ
µo

   {
κB2

µo
    ∇λ }•dS1))

Applied to the open line region 1, the above two terms are simply our  P1 + P2.

 P1 + P2 =  
⌡

⌠

κj12
[∇λ ]2

λ2
dV1    - oÈ 

λ
µo

   {
κB2

µo
    ∇λ }•dS1

The power P1 is dissipated in region 1 if ∇λ 1 ≠ 0, and P2 is positive since ∇λ  and
dS1 are in opposite directions. The surface S1 surrounding volume 1 consists of 3
kinds of surface: the portion where the gun flux and helicity enter volume 1; the flux
conserver on the outside of volume 1 where ∇λ• dS1 = 0, and the separatrix surface
between regions 1 and 2 where ∇λ• dS1 < 0.  On the last of these surfaces the
power  P2 flows into volume 2.

Applied to the closed line region 2 the model gives,

⌡

⌠

κ j22 
[∇λ ]2

λ2
 dV2    -  oÈ λ

µo
   {

κB2

µo
    ∇λ }•dS2 = 0

(Note that the surface vector dS2 = – dS 1 is now pointed outward from region 2 to
region 1, so and ∇λ• dS2 > 0).  Therefore,

P2 ≡  oÈ 
λ
µo

   {
κB2

µo
    ∇λ }•dS2 =  

⌡

⌠

κ j22 
[∇λ ]2

λ2
 dV2     = Poh2 + P3
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Here, one uses the value of λ and its gradient on the separatrix surface for the
surface term, and the λ-profile in region 2 for the volume term.  And, to repeat, while
there are fluctuations at work in region 2 to rearrange field and current profiles to a
near force-free state, there is no "internal" dynamo power source.  The power
dissipation and flow in region 2 is fed from the separatrix by P2.  Also, if there is a
gradient in λ in region 2 some of this power will be dissipated and some will flow
further inward until all of the power is dissipated.  

While the above model does not allow the powers P1,3 to be calculated
without a model for hyper resistivity, it does gives a plausible relationship between λ-
gradients and power dissipation and flow.  In a sharp boundary model, where the λ-
gradients are near zero everywhere except across a narrow layer of separatrix, the
excess power is zero everywhere except in that layer.  There is both power
dissipation in that layer and flow into region 2.  But if ∇λ 2 = 0 there would be no flow
of power towards the magnetic axis to supply the internal ohmic loss, so there must
be an internal gradient and, concomitantly, P3 ≠ 0.  Since dynamo power can be
generated on each of the open lines between the flux conserver and the separatrix, a
gradient in λ is not necessary in region 1, except near the separatrix to provide flow
for Poh2 + P3.  Details of the dynamo process are obviously needed to make more
definitive statements involving the dissipation and flow of power in the two regions.  

Summarizing the equations,

Vg = Vsh  + I1R + ⌡⌠Edyn � dı1    +  
∂
∂t (LI2)          Voltage

Pg = VshI1 + I12R1 + I1 
∂
∂t (LI2)    + Pdyn      Power   

with

Pdyn - Poh2 = P1 +  P3 =  
∆λ

<λ2>
    Poh2 - I1

∂
∂t (LI2)        Helicity        constraint   

or

Poh2 =   
<λ2>

<λ1>
 (Pg - Psh - Poh1)   

Circuit         Model

A gun circuit model which incorporates the above voltage and power features
can now be made.  It is simply a primary circuit consisting of 2 resistors to represent
P1 and Poh1 and an ideal transformer with turns ratio N such that NI1 = I2 and NV2 =
V1.  Similarly, in the secondary circuit there are 2 resistors to represent the power
losses P2 = Poh2 + P3, and an inductor to represent the toroidal flux Φ2, <λ2>Φ2 =
µoI2.  Recall that in our heuristic model,

P1 =  
⌡

⌠

κ1j12
|∇λ 1|2

λ12
dV1   Poh2 + P3 =  

⌡

⌠

κ2j22
|∇λ 2|2

λ22
dV2   
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Since these integrals contain j2 one might expect them to be proportional to I12 and
I22 respectively.  So we define the primary circuit powers Poh1 + P1= I12(R1 + Rd)
and the secondary circuit powers Poh2 + P3 = I22(R2 + Rs), with the ohmic powers
Poh1,2 determined from R1,2 respectively.  

An inductor L2 in the secondary can be defined from L and the turns ratio.

Dividing by N transforms a primary voltage such as VL1 =  
∂
∂t (LI2)    to a secondary

voltage, so we find L2 = 
µo

N<λ2>
   .  The power to that inductor is I2V2 = I2 

∂
∂t (L2I2)    =

I1 
∂
∂t (LI2)   .  The circuit described here is shown below.  

One issue worth understanding here is the amplification of the toroidal field
over the edge poloidal field, or the relationship between I2 and I1.  To increase I2 and
B2 beyond the values created in the bubble burst is one goal of our experiments.
However, Ampere's law relates the line integral of the toroidal field, around the
magnetic axis, to all of the current crossing the area encircled by this line integral.
The current in question is all poloidal current from the geometric axis out to the
magnetic axis, a sum including I1 and all the poloidal current penetrating the annular
(mid plane) surface from the separatrix to the magnetic axis.  If the fields are
essentially those of the force-free Taylor equilibrium, then all fields and current ratios
are known in a given geometry and there is a specific field limit defined by the Grad-
Shafranov equilibrium.  

As shown by Hooper5, when the value ∆λ → 0 a resonance is approached
and the resulting equilibria force the layer of open field lines into increasingly smaller
volumes, raising the value of N. The resonance is approached from above by
reducing the driving current I1 (which specifies a value of <λ1> for a given gun flux),
so that <λ1> approaches the resonant value <λ2> for the flux conserver.  From
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equilibria studies for various λ-profiles in a given geometry, one can model the
relationship between N and ∆λ.  

Values in the circuit model can be determined if we know the equilibria at all
times, including the λ-profiles.  From these we determine N, L2, and the current and
field profiles.  If the temperature and density profiles are measured or estimated,
Spitzer resistivities can be calculated.  The resistances, R1,2 are calculated and the
powers P1 + P3 are determined at each time step.  

To use the model we take I1 to be the independent variable in the problem
(using the gun current data as input).   Then I2 is calculated from N, the resistor and
inductor values are calculated, and the gun voltage waveform V1(t) is constructed
from the circuit model and compared with the data.  By fitting the voltage calculations
to the data one can then improve upon various of the estimates used as input to the
model.

We would like to know the ratio of Rs to Rd, since we know only the sum Rd +
N2Rs from the power sum P1 and P3.  From their definitions, assuming all quantities
are constant, the power ratio contains κj2ξ2V, where ξ is the length λ|∇λ |-1.  So,

P1
P3

    = 
Rd

Nf2Rs
    = 

κ1j12ξ12V1

κ2j22ξ22V2
   

While there is no serious way to estimate each of the quantities, the hyper resistivity
in particular, one might make educated guesses as to ratios, and hence make
educated guesses on the resistance ratios.  In summary, the sum Nf2Rs + Rd is
calculated from other known quantities, while the ratio of these two terms must be
estimated.

There are additions that can be made to this model.  If a fraction "f" of the gun
current flows directly across the gun channel we can modify the above circuit with an
appropriate resistor across the gun terminals.  Its resistance can be calculated from f
(as determined from the equilibria) and from the impedance of the remaining circuit.
The reduced current flowing around the spheromak is now used to calculate ohmic
power and dymamo power dissipation in the primary, and to determine the turns ratio
from the equilibria.  Now, the turns ratio is still N:1, but I2 = N(1 - f)I1.  

Another small modification to the circuit would account for storing a fraction of
the energy at a given moment into the waves involved in the dynamo action.  A
parallel circuit of the dynamo resistances Rs,d with a high-Q L-C circuit could
represent the oscillations in gun voltage seen in the experiments.  Values of L,C
would be calculated by the demand of high-Q, and the frequency and amplitude of
the voltage oscillations.  Both these additions are indicated below.
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